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Abstract

Construction toys are a superb medium for creating geometric mod-
els. We argue that such toys, suitably instrumented or sensed,
could be the inspiration for a new generation of easy-to-use, tan-
gible modeling systems—especially if the tangible modeling is
combined with graphical-interpretation techniques for enhancing
nascent models automatically. The three key technologies needed
to realize this idea are embedded computation, vision-based acqui-
sition, and graphical interpretation. We sample these technologies
in the context of two novel modeling systems: physical building
blocks that self-describe, interpret, and decorate the structures into
which they are assembled; and a system for scanning, interpreting,
and animating clay figures.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—interaction techniques.

Keywords: Applications, Geometric Modeling, Graphics Sys-
tems, HCI (Human-Computer Interface), Shape Recognition, User
Interface Hardware.
Additional Keywords: Embedded Computation, Tangible User In-
terfaces, Perceptual User Interfaces, Transmedia.

1 Introduction

Artists using standard 3D modeling packages must specify pre-
cisely the geometric and material properties of the models they
create, and therein lies much of the complexity and tedium of us-
ing those tools. By contrast, children playing with construction
toys like LegoTM and K’nexTM make simple models easily, and use
their imaginations to fill in the details. We would like to transform
computer-based geometric modeling into that same kind of play-
ful, tactile experience but without sacrificing the ability to create
the interesting geometric detail and movement that make 3D graph-
ics and animation compelling. To retain the tactile experience of
model manipulation, we look to tangible-interface technology; and
to create detailed, fully realized models, we use new methods for
graphically interpreting a nascent model by recognizing and aug-
menting its salient features.

This combination oftangible interactionandgraphical interpre-
tation is investigated in a pair of case studies. Tangible modeling
can be approached in two ways: either by directly instrumenting
the modeling medium with embedded computation or by using ex-
ternal sensors to capture the geometry. Our first system consists of
computational building blocks assembled into physical structures
that in their aggregate determine and communicate their own geo-
metric arrangement. A rule-based system interprets these structures
as buildings, parses their architectural features, then adds geometric
detail and decorative enhancements (Figures 1 and 4). Our second
system uses simple and robust computer vision to capture volumet-
ric scans of clay models of such common toy-like objects as peo-
ple, animals, trees, houses, cars, and boats. A volumetric matching
algorithm allows us to recognize, interpret, and animate the clay
models (Figure 2).

2 Computational Building Blocks

The vision of a tangible 3D geometric modeling system that uses
building blocks with embedded computation has been pursued by
several groups over the past 20 years. Research on this topic began
with the pioneering projects of Aish [1, 2] and of Frazer [15, 16, 12,
14, 13], and was renewed more recently by Dewey and Patera [7,
3].1

All of these systems take advantage of the idea that completely
and robustly determining the geometry of a tangible model fol-
lows naturally if the model is built from rigidly connected building
blocks of known size and shape. Recovering 3D geometry is then
reduced to the problem of determining the identity and connectivity
of the blocks and communicating that information to a host com-
puter. However, these systems differ significantly in the details of
their design and implementation. A broad range of solutions have
been tried for these fundamental engineering problems:

� How do blocks connect?Blocks that can stack only verti-
cally have a low “constructive versatility” relative to, say,
LegoTM blocks (a pair of standard2 � 4 LegoTM blocks can
connect in 184 different configurations). Simple, symmetrical
connectors are the key to achieving high constructive versatil-
ity.

� How are blocks powered?Self-powered blocks allow use
of simpler connectors but increase the cost, maintenance,

1The AlgoBlock [31] and Triangles [18, 19] systems are similar in ar-
chitecture to the tangible modelers cited above. However, their target ap-
plication is visual/tangible programming, not geometric modeling; and both
systems enable the general description of 2D structure only, not 3D.

Two other tangible modeling systems deserve mention. The “Active
LegoTM Baseplate Project” at MIT [23] addressed the issue of 3D geometric
modeling, but it was only a paper design and was never implemented. The
MonkeyTM is a posable articulated linkage that is used for keyframing and
performance capture [10]; it is a successful product.
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Figure 1: (a) a physical block structure comprising 98 blocks; (b) a close-up of the blocks; (c) a bottom view of the circuit board inside each
block; and renderings of the virtual model recovered from the structure, one literal (d) and one interpreted (e). The literal rendering uses
associated shapes and colors to render the blocks. The virtual model is augmented automatically for the interpreted rendering.

(a) (b) (c) (d) (e)

Figure 2: (a) a clay model; (b) its volumetric scan, computed from silhouette information; (c) the best match for it from a small library of
object templates; (d) the constituent parts of the interpreted virtual model; and (e) a frame from an automatically generated animation of the
virtual model running.

and complexity of the individual blocks. Externally pow-
ered blocks require connectors that handle the distribution of
power.

� How do blocks communicate?The earliest systems used sim-
ple electronics to create a circuit-switched network in a block
structure. Recent systems have used a microcontroller in each
block, and a variety of message-passing architectures for com-
munication.

� How is geometry computed?There are two general strate-
gies for computing connectivity, and thereby geometry. At
one extreme the connectivity computation can be controlled
centrally by the host computer; at the other extreme, it can be
organized as a distributed computation among the computing
elements in the blocks.

The system we have developed is just one point in a large space
spanned by the dimensions of connection, communication, and
computation, but it illustrates well the various design and engi-
neering issues involved. Its distinctive characteristics include the
following:

� Very simple physical/electrical connection: We have
based the physical design of our blocks on the popular

LegoTM block. Although this choice achieves much greater
constructive versatility than any previous system, it comes at
the price of extremely simple connectors. Our standard block
has eight plugs on the top, and eight jacks on the bottom. The
plugs and jacks have only two conductors each, one for power
distribution and one for bidirectional signals.

� Asynchronous, distributed communication:These simple
connectors make it impossible to have a common bus link-
ing all our blocks (in addition to point-to-point connections).
The software of many previous systems was simplified by us-
ing such a bus for global synchronization and communica-
tion. All communication in our block structures is based on
asynchronous message passing between physically connected
blocks.

� Parallel, distributed computation of structure:Our design
goal was to build self-describing structures of up to 500
blocks. To complete the distributed computation of structure
for a 500-block model in a reasonable time we had to ex-
ploit parallelism, which further complicated an already com-
plicated distributed computation.

� Automatic detailing:A modeling system that makes it easy to
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create coarse models will be of limited use if the refinement
of the models requires learning a complex user interface such
as that found in today’s animation and CAD systems. Au-
tomatic detailing based on graphical interpretation can make
block structures look less blocky and more interesting. As an
illustration of what is possible, our system interprets a block
structure as a building; it identifies walls, roofs, windows,
doors, and other features, and augments them with additional
geometric and surface detail in various styles to produce more
interesting models.

2.1 System description

For economy and ease of development, we used mostly off-
the-shelf components in the construction of our building-block
prototypes (Figure 1(b)). A block consists of a100mm (L) �
50mm (W)� 25mm (H) plastic box that is drilled to accommodate
slightly modified DC power connectors. Eight plugs are on top of
the block, and eight jacks are on the bottom. The dimensions of
the box and the locations of the plugs and jacks are such that our
building blocks fit together like LegoTM blocks.

Each connector has just two conductors. However, instead of
using one for power and one for ground, we use the inner pin as a
signal line for bidirectional communication, and the outer sleeve for
power distribution. Each block is wired internally so that connec-
tors with power and ground on their outer sleeves, respectively, are
arranged in an alternating pattern, as shown in Figure 1(c). The po-
larity of the connector sleeves marked ‘X’ is different from that of
the sleeves marked ‘O.’ Thus each block has at least one connection
to power and one to ground in any typical LegoTM-block structure,
i.e., one in which no block is connected at only one corner or at
only diagonally opposite corners. There is no way to tell a priori
which connector sleeves have power or ground, but this problem is
solved by the use of a full-wave bridge rectifier.

We chose the PIC16F877 microcontroller as the best single-chip
solution to the various design problems posed by our application.
Its features include: a relatively large number of I/O pins (16 are
required for communication, and it has 33); compact size; low-
power, high-speed (20 Mhz) CMOS technology; an 8-bit RISC
CPU; 8K � 14-bit words of FLASH program memory;368 � 8-
bit bytes of data memory (RAM);256 � 8-bit bytes of EEPROM
data memory; a hardware Universal Synchronous Asynchronous
Receiver Transmitter (USART) that we use for debugging; and in-
terrupt handling. The program and data in each block’s microcon-
troller are identical except for a unique ID number.

We left several pads in the periphery of our custom circuit board
to accommodate such additional transducers and sensors inside a
block as speakers, and proximity and touch detectors. Alternatively,
the board can be trimmed to fit inside a2�2 building block without
affecting its basic functionality.

2.2 Geometry determination

A fully assembled block structure computes its own geometry in
three phases. When a block is powered on, it immediately en-
ters Phase 1 of the geometry-determination algorithm. Lacking a
global communication bus, the switching on of electrical power is
the only source of synchronization, which is necessarily approxi-
mate because of small delays in power propagation throughout a
block structure.

All 16 signal lines in a block are normally held high by pull-up
resistors. Phase 1 begins with each block pulling its top signal lines
(those in the plugs) low. Each block then tests its bottom signal
lines (those in the jacks) to determine and record which of them
have been pulled low by some other block. After a short delay
to ensure that the approximately synchronized blocks do not try

to drive shared signal lines simultaneously in both directions, this
test is then repeated with the roles of top and bottom lines reversed.
Thus when Phase 1 is complete, each block has identified in parallel
which of its lines areconnected, i.e., are attached to other blocks,
but it does not know the identity of these neighboring blocks.

After another short delay, each block enters Phase 2 of the algo-
rithm during which blocks communicate with their neighbors over
the connected lines found in Phase 1. At the start of Phase 2, each
block listens on its connected bottom lines for transmitted pack-
ets that contain the ID of the transmitting block and the number of
the connector over which it is transmitting.2 The receiving block
records this information with its own ID number and the number
of the connector over which it received the transmission. The com-
bined data form a complete record of a single connection between
two blocks. When a block has successfully received a transmission
on all of its connected bottom lines, it begins transmitting on its
connected top lines, iterating through them in order. Connectivity
information, therefore, flows initially through the block structure
from bottom to top, with the potential for significant parallel com-
munication.

After a block has completed the first half of Phase 2, it knows
to which connector of which block each of its own bottom connec-
tors is attached. During the second half of Phase 2, the procedure
is repeated with blocks listening on their top connected lines and
transmitting on their bottom connected lines. Thus, at the end of
Phase 2, each block has acquired and recorded in its database com-
plete knowledge about all of its connected lines: the IDs of the
connected pair of blocks and the connector numbers by which they
are attached. Each connected line that is processed successfully in
Phase 2 is termedvalid.

In Phase 3, the connectivity information determined in Phase 2
is communicated to the host computer through thedrain, a special
block that runs slightly different software and has a serial connec-
tion to the host computer. In addition to mediating communica-
tion between a block structure and the host, the drain also supplies
power to the blocks and may be attached to any part of the struc-
ture. During Phase 3 all blocks listen for messages on all of their
valid lines. When arequest-to-drainmessage is received, a block
transmits packets containing all of its connectivity information on
its drain connector, the one from which it received the request-to-
drain message. When the block has successfully completed these
transmissions, it forwards the request-to-drain message on the first
of its valid lines, and enters a message-forwarding mode. If it re-
ceives a packet containing connectivity information, it stores and
forwards it on its drain connector; if it receives subsequent request-
to-drain messages, it responds with analready-drainedmessage;
when it receives an already-drained ordonemessage, it forwards
the request-to-drain message on its next valid line or sends a done
message on its drain connector when all its valid lines have been
processed.

The first request-to-drain message is injected into the structure
by the drain, and permission to drain then percolates through the
block structure in a preorder traversal of the blocks. Although this
traversal is performed sequentially—only one block has permission
to drain at any point in time—the forwarding of messages towards
the drain is pipelined, thereby achieving some parallelism in this
phase as well.

At the end of Phase 3 the host computer should have complete
connectivity information for the block structure. (In fact, it should
have redundant information because each connectivity datum is re-
ported twice, once by each of the two blocks involved. This re-

2Transmitted packets may be missed if the receiving microcontroller is
busy when transmission commences. Noise may also corrupt a message.
Therefore all packets transmitted in Phases 2 and 3 have checksums and
are acknowledged, and faulty transmissions are retried after an appropriate
timeout.
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dundancy contributes to the robustness of the system, but it can be
eliminated for greater efficiency.) The host also has shape data for
each block, indexed by ID. These data are recorded when a block is
programmed. A straightforward recursive procedure ought now to
give the 3D structure of the block structure, which can then be used
to produce a geometric scene description suitable as input to a va-
riety of common 3D graphics applications. However, occasionally
the host does not obtain complete information: due to mechanical
stresses in the structure, some connections fail (about 0.5% of them
on average) such that their connectivity data are not acquired. Our
geometry-recovery procedure therefore determines the most likely
block structure given potentially incomplete connectivity data.

The block structure in Figure 1(a) contains 98 blocks. The time
required for this structure to compute its own geometry is 35 sec-
onds. The structure in Figure 4(c) contains 560 blocks and requires
53 minutes for geometry determination. Almost all of the time is
spent in Phase 3 of the algorithm.

2.3 Graphical interpretation

For a literal renderingof the block structure, the host uses associ-
ated values for the rendering attributes of each block, such as shape,
color, and texture. Figure 1(d) shows a literal rendering of the block
structure in Figure 1(a); color and shape values have been chosen
to mimic the physical blocks.

Examples ofgraphical interpretationsare shown in Figures 1(e)
and 4(b) and (d). To produce these enhanced renderings, our system
generates a description of a block structure as a set of logical ax-
ioms, one to assert the existence and location of each block. These
axioms serve as input to a logic program written in Prolog that can
identify architectural features of a block structure. For example, the
rules in Figure 3 compute which blocks constitute the walls and roof
of a structure, interpreted as a building.3 Recognized structural ele-
ments can be decorated with additional geometry and surface detail
to enhance the visual appearance of the rendered model.

To validate the ability of the computer to generate interpreted
renderings, we handcrafted a few distinct styles that can be applied
to block structures automatically. For a fully realized application,
we would develop more interactive user interfaces for customizing
and applying these interpretive styles. We return to this point in the
concluding section of the paper.

3 Clay

Using external sensors to capture geometry is the alternative tech-
nology for supporting tangible modeling. For our second case
study, we were inspired by the ancient myth of Pygmalion, whose
sculpture of a woman was brought to life by Venus [24]. We set
ourselves the goal of bringing clay models to life automatically. Al-
though any practical application would divide this task more evenly
between user and computer, we tried to fully automate the system
in order to explore the limits of the technology, just as we did in
our previous case study. In the following subsections we present
the details of the hardware and software used to scan, recognize,
interpret, and animate 3D clay models.

3In the early 70’s Winston developed a landmark program that could
learn about simple architectural structures from positive and negative ex-
amples of those structures [33]. However, the robust recognition of the im-
portant structural elements in our block models requires hand-crafted rules
of much greater complexity than those that could be learned by Winston’s
approach.

% wall/1 finds sets of blocks that form walls. A wall is defined to be
% a contiguous set of blocks that lie flush against some vertical plane,
% and that constitute a given fraction of the structure.
wall(WALL BLOCKS) :-

structure bbox(X MIN, X MAX, , , Z MIN, Z MAX),
candidate planes(X MIN, X MAX, Z MIN, Z MAX, U, V, W, R),
lies flush against(U, V, W, R, PLANE BLOCKS),
contiguous subsets(PLANE BLOCKS, PLANE BLOCKS SUBSETS),
member(WALL BLOCKS, PLANE BLOCKS SUBSETS),
big enough(WALL BLOCKS).

% wall tops/1 finds the blocks that are the tops of walls.
wall tops(WALL TOPS) :-

setof(BLOCK,
WALL BLOCKS ˆ

(wall(WALL BLOCKS),
member(BLOCK, WALL BLOCKS),
not overhung(BLOCK, WALL BLOCKS)),

WALL TOPS).

% roof blocks/1 computes the set of blocks make up the roof, which is
% defined to be those blocks that rest directly or indirectly on the tops of
% walls. The indirectly resting blocks are computed by grow roof/2.
roof blocks(ROOF BLOCKS) :-

findall(BLOCK1,
(wall tops(WT BLOCKS),
member(WT BLOCK, WT BLOCKS),
on top of(BLOCK1, WT BLOCK)),

BASE BLOCKS BAG),
setof(BLOCK2,

member(BLOCK2, BASE BLOCKS BAG),
BASE BLOCKS),

grow roof(BASE BLOCKS, ROOF BLOCKS).

grow roof(NASCENT ROOF BLOCKS, FINAL ROOF BLOCKS) :-
member(BLOCK1, NASCENT ROOF BLOCKS),
on top of(BLOCK2, BLOCK1),
not member(BLOCK2, NASCENT ROOF BLOCKS),
grow roof([BLOCK2 j NASCENT ROOF BLOCKS], FINAL ROOF BLOCKS),
!.

grow roof(ROOF BLOCKS, ROOF BLOCKS).

Figure 3: Recognizing the structural elements of a block structure
by logic programming.

3.1 System description and
geometry determination

Our scanning system consists of a motorized rotary table, a
consumer-quality digital camera, a laser striper (optional), and a
host computer (Figure 5). The camera is calibrated from an image
of an object of known dimensions. The clay model to be scanned
is placed upright and face forward on the rotary table. (It is con-
venient for the matching process to have models placed in a known
orientation. Inferring orientation automatically is certainly feasible
but seems unnecessary for modeling applications that involve co-
operative users.) The camera captures an image sequence of the
model as it rotates, and a volumetric scan is generated from silhou-
ettes [4]. This approach worked well on the majority of models
we scanned, but when significant concavities were present (e.g.,
the door and windows of the house in Figure 8), the laser striper
could be used to refine the shape of the model.4 The use of silhou-
ettes and laser striping is well suited to our smooth-surfaced, single-
color clay models; however, systems that rely on surface-color vari-
ation [29] or uncalibrated systems that require a significant number

4Affordable 3D scanning systems that operate on the same principles
as our laboratory system are now available commercially from Geometrix,
Sanyo, and others.
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(a) (b)
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Figure 4: (a) a model of a castle comprising 118 blocks, and (b) an interpreted rendering of it. The automatic enhancements in this graphical
interpretation include the addition of turrets, roofs, windows, archways, a portcullis, and a flagpole in appropriate locations, as well as
the selection of suitable surface properties and features for all the geometry. The 560-block model in (c)—a 12-inch ruler is included to
show scale—was built as a challenging virtual environment for Quake II, the data format for which is another output option in our system.
Applying the same interpretive style to this larger model to get the rendering in (d) requires changing only one numerical parameter indicative
of building scale: it specifies the smallest number of blocks in the structure that can constitute a distinct architectural feature.

of point matches between surface features to be visible in the image
sequence [11, 22] would likely encounter difficulty.

3.2 Graphical interpretation

The technical novelty in our system lies in our approach to model
recognition and interpretation, both of which are accomplished by
comparing a set of parameterized object templates to a scanned clay
model. The templates are deformed to match the model, and the
matching score determines how the model is classified.5

5Brooks’ ACRONYM system [5] is an early example of the use of pa-
rameterized models (generalized cylinders) for object recognition. Solina
et al. [30] describe how to recover parametric models (superquadrics with
global deformations) from range data by minimizing surface distances,
which is similar to our maximization of volumetric overlap. Surveys of

The templates are articulated linkages in which the links are trun-
cated rectangular pyramids, orbeams. A beam is completely de-
fined by 10 numbers that specify the positions and dimensions of
two parallelbaserectangles. By requiring that the bases always
be orthogonal to some major axis, a beam can be efficiently raster-
ized in three dimensions, which is important for the efficiency of
the matching algorithm described below. A linkage is formed by
connecting beams at the corners or centers of any of their six faces.
Figure 6 shows representative templates for the 13 object categories
currently recognized by our system. For each category there are 10
actual templates, created by hand, that differ only in the relative

other related work on shape recovery and object recognition from image
and range data can be found in more recent papers, e.g., [8, 9]. Finally,
an application closely related to ours, shape-based indexing and retrieval of
mechanical objects, is discussed in [6].
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Figure 5: A low-cost scanning system.

proportions and orientations of their constituent beams: they pro-
vide multiple starting points for the matching algorithm, thereby
reducing its chance of being confounded by matches that are lo-
cally optimal but globally inferior. A complete set of templates for
a single category is shown in Figure 7.

Each biped template comprises six beams. Hence there would
seem to be6� 10 = 60 parameters available for deforming a tem-
plate. However, many of the parameters are constrained relative to
each other. Some of these constraints derive implicitly from the
enforced connectedness of beams in an articulated linkage. Others
are the result of explicit programmer-specified constraints that ap-
ply to beam-size parameters, e.g., a constraint that the dimensions
of the base rectangles for both arm beams be the same. When these
constraints are applied, the number of free parameters for a biped
template reduces to a more manageable 25. By modifying these
parameters the computer can attempt to deform a template to best
match a given clay model.

Quantifying the notion of a best match in an objective function
is the essential problem in this optimization-based approach. Our
objective function has terms for the following characteristics of a
voxel-based match:

� Superposition:Each voxel occupied by both the rasterized
object template and the scanned clay model contributes+1 to
the objective-function score.

� Excess:This term penalizes voxels occupied by the raster-
ized template but not by the clay model. A simple approach
would be to add a score of�1 for each such voxel. A much
better idea is to add a score of�r, wherer is the distance
to the nearest occupied voxel in the clay model. This value
can be computed for each voxel by an efficient two-pass al-
gorithm [28]. The advantage of this distance-based penalty is
that its gradient still gives useful information even when there
is minimal overlap between the template and clay model.

� Deformation: Without some penalty for excessive deforma-
tion, templates can sometimes achieve excellent superposition
and excess scores through absurd contortions. Deformation
beyond a certain threshold is therefore penalized by an ex-
ponential function of the distance between the original and
current parameter vectors.

Dividing the superposition and excess terms by the number of occu-
pied voxels in the scanned volume normalizes for the volume of the
clay model; dividing the deformation term by the number of beam
vertices normalizes for the complexity of the object template.

Given this objective function, the matching algorithm is straight-
forward. First, the object template is adjusted for fit: the template
is scaled in all three dimensions so that the beam endpoints lie just
within the bounding box of the scanned model. (There is no need
to normalize for orientation because we assume that scanned mod-
els have been placed upright and facing forward.) Matching is then
just a matter of gradient descent using the negative of the objective
function above. We use the conjugate-gradient method of gradi-
ent descent [26], approximating partial derivatives of the objective
function by central differences. For best results we run the gradient-
descent algorithm to quiescence three times in succession: first, we
vary only the location parameters of the object template, then only
the size parameters, and finally the location parameters again. We
also schedule the relative weights of the objective-function terms
over the three runs; the superposition and excess terms decrease in
significance, and the deformation term increases. Good values for
the weights were determined empirically for a small subset of the
clay models, and then applied uniformly to all the models in our
experiments. Matching is performed against a total of 130 object
templates, 10 from each of the 13 categories shown in Figure 6.

Figure 8 shows the 16 clay models on which we tested our sys-
tem. Each model is from one of the 13 object categories listed in
Figure 6, with some duplication. These categories were based on
the objects that figured most often in an informal survey of chil-
dren’s drawings. The artists who created the models worked inde-
pendently of the programmer who fashioned the object templates,
so that sometimes there are significant differences in the artists’ and
programmer’s conceptions of a modeled object, e.g., compare the
clay model of the Insect in Figure 8 with the corresponding object
template in Figure 6. Each volumetric scan of a clay model was
computed from 180 images, taken a uniform2Æ apart. An addi-
tional 180 images were taken with the laser stripe on, though this
additional data improved the scan significantly for only one of the
reported models (the indented windows and door of the house were
found). The scanned volumes were subsampled to a resolution of
128� 128� 128 voxels for the purposes of matching.

Table 1 lists the top two matches for each clay model; Figure 9 il-
lustrates the best matches graphically. Matching a single clay model
against all 130 object templates took an average of 85 minutes on a
200 MHz Pentium Pro PC, and required rasterizing about 100,000
object templates; the bulk of the time was spent in the rasterization
step. The top match was correct for 14 of the 16 clay models.

An examination of the two matching errors was instructive. Al-
though the Insect template deformed to cover the Insect model al-
most perfectly, the degree of deformation was sufficient to result
in the Quadruped and Chair templates receiving better matching
scores. Reducing the deformation penalty would cause the Insect
template to match best, but would also cause many incorrect best
matches for the other clay models. The failure of the Car template
to be the best match for the Car #1 model is due to a limitation of
our modeling language for articulated linkages: one beam can at-
tach to another only at the four corners or center of one of its faces.
The offset of Car #1’s wheels are such that the Car template cannot
deform to cover them very well with its wheel beams constrained
to attach as they do.

When the best-matching template has been found for a given
clay model, an interpretation step parses the model into its con-
stituent parts. For example, if a model is recognized as a biped,
the match between the clay model and the deformed biped tem-
plate is used to identify the model voxels that constitute the head,
arms, legs, and torso. This voxel classification is based on the short-
est distance from each voxel to each beam through clay-occupied
space. Voxels are then assigned to their closest beams, with ties
broken by distance to the beams’ center axes. Once the best match
is known, parsing takes about a minute. The 14 correctly matched
models were all parsed acceptably well. Sample parses are shown
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House Bicycle Bird Bridge Insect

Chair Tree Rocket Table Boat

Biped Car Quadruped

Figure 6: Representative templates from 13 categories of toy-like objects.

Figure 7: The 10 templates for the Biped category.

in Figure 2(d) and Figure 10.

With this information we can bring a clay model to (virtual) life.
We did this automatically for the quadruped shown in Figure 2. The
body measurements, masses, and moments of inertia were com-
puted from the parse of the clay model. These values were passed
as input to a control and simulation system for a four-legged robot,
which adapted an existing control system to the dynamics of this
particular clay model [20, 27]. The motion data computed by the
simulation were then used to animate the object template, which in
turn was used to animate the scanned volume by moving its vox-
els in rough concert with the beams of the template to which they
were assigned in the parsing phase. However, care must be taken
to avoid the introduction of tears and cracks in the model as it de-
forms. Such unwanted artifacts will appear if each voxel maintains
position relative to just its associated beam. It is better to have all
beams influence the movement of a voxel in inverse proportion to
the square of their distance from the voxel; this reduces tears at the
junctions of different model regions. (See Figure 2 and the com-
panion videotape.) Related work on animating volumetric objects

is described in [17].
An alternative and more general way to bring these models to

life is with keyframes specified by the user. Commercial animation
packages are notoriously complex because of the large number of
features that must be provided. However, these clay models have
been parsed by the computer and, therefore, the internal skeletal
structure and kinematics are already known. The skeleton should
allow the construction of an intuitive animation interface for this
specific character. The user need only specify the motion of the
skeleton because the internal details of the motion of the clay can be
computed automatically using heuristic algorithms as was done for
the quadruped or a more general physical simulation of clay [32].
Examples of this approach are shown on the companion video.

4 Conclusions and future work

In our case studies we have investigated the combination of tan-
gible modeling and graphical interpretation. Tangible modeling
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House Bicycle Bird Bridge Insect

Chair Tree Rocket Table Boat

Biped #1 Biped #2 Car #1 Car #2 Quadruped #1 Quadruped #2

Figure 8: Examples from the image sequences for the 16 clay models captured by the camera illustrated in Figure 5.

House Bicycle Bird Bridge

Chair Tree Rocket Table Boat

Biped #1 Biped #2 Car #2 Quadruped #1 Quadruped #2

Figure 9: Best matches illustrated: deformed object templates superimposed on the scanned volumetric models.
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Bird Car #2 Chair Table Biped #2

Figure 10: Sample parses of five clay models. The colored regions correspond to specific beams in the corresponding best-matching object
template.

Object Templates
Clay Models Ranked by Score

First Second
House House(105) Car(77)
Bicycle Bicycle(87) Boat(47)

Bird Bird(79) Insect(76)
Bridge Bridge(115) Insect(104)
Insect Q’ped(54) Chair(50)
Chair Chair(78) Bird(56)
Tree Tree(82) Biped(71)

Rocket Rocket(89) Q’ped(87)
Table Table(107) Car(102)
Boat Boat(92) Bicycle(31)

Biped #1 Biped(82) Q’ped(67)
Biped #2 Biped(98) Q’ped(76)
Car #1 Boat(105) Car(80)
Car #2 Car(115) Chair(92)

Q’ped #1 Q’ped(86) Insect(55)
Q’ped #2 Q’ped(113) Bicycle(71)

Table 1: The best-matching object templates for all the clay models,
along with the matching scores. Of the 16 models, 14 were matched
correctly; the entries for the two erroneous matches are shown in
italics.

makes it easy for the user to create simple geometry quickly; the
computer performs the tedious detailing tasks via graphical inter-
pretation. Combined, these two ideas make for a new, more ac-
cessible approach to 3D modeling. As with recent sketch-based
systems [34, 21], some generality is sacrificed in return for dra-
matically simpler interfaces that are accessible to unskilled and un-
trained users.

However, the modeling systems we have developed are only re-
search prototypes. To make a truly useful and affordable system,
more investigation is required. Our current work and future plans
include:

� Alternative architectures for embedded computation:The
most significant practical problem with our computational
building blocks is that of power supply: the 560-block
model in Figure 4(c) required a peak current of 8 amps at
13.8 volts to determine its geometry and to illustrate algorith-
mic progress via the blocks’ LEDs. To reduce the power re-
quirements (and thereby the cost) of the blocks, we are look-
ing at ways of capturing a block structure using only a bare
minimum of active components in each block. We are also
considering the design of embedded computation architec-
tures that make use of a broadcast medium. And to realize

a more interactive experience, we are exploring hardware and
software modifications that allow for interactive, incremental
adjustment of the physical models.

� Applications ancillary to geometric modeling:We have built
blocks with LEDs, speakers, switches, and motion sensors
that support “world-in-miniature” interaction metaphors for
virtual environments in which our miniature worlds are phys-
ical rather than virtual [25]. We are also exploring game ap-
plications that make use of these same sensors and actuators.

� Interactive embodiments of graphical interpretation:In our
case studies, we focused on fully automatic graphical inter-
pretation with the goal of understanding the limits of such
an approach. We plan to study semi-automatic systems in
which the computer plays a more assistive role. For example,
it would be straightforward for our interpretation systems to
prompt the user for help with ambiguous interpretations (e.g.,
“Is this part of the wall or roof?” or “Is this a quadruped or
a chair?”) or with a choice of enhancement (e.g., “Do you
want a portcullis or a drawbridge here?” or “Do you want the
quadruped to run or gallop?”). This kind of user input would
do much to address problems of brittleness and speed in our
prototypes.

More interestingly, we could develop mixed-initiative sys-
tems that make more use of the fully automatic algorithms we
have developed. For example, a mixed-initiative system might
begin by prompting the user for all stylistic and aesthetic
choices, but then begin making suggestions that are consis-
tent with the user’s previous selections. Our case studies show
that these kinds of systems can be built, and hold promise
to enable a new paradigm of computer-assisted graphical-
interpretation applications.
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