
To appear in the ACM SIGGRAPH conference proceedings

Efficient Gradient-Domain Compositing Using Quadtrees

Aseem Agarwala

Adobe Systems, Inc.

Abstract

We describe a hierarchical approach to improving the efficiency of
gradient-domain compositing, a technique that constructs seamless
composites by combining the gradients of images into a vector field
that is then integrated to form a composite. While gradient-domain
compositing is powerful and widely used, it suffers from poor scal-
ability. Computing an n pixel composite requires solving a linear
system with n variables; solving such a large system quickly over-
whelms the main memory of a standard computer when performed
for multi-megapixel composites, which are common in practice. In
this paper we show how to perform gradient-domain compositing
approximately by solving an O(p) linear system, where p is the to-
tal length of the seams between image regions in the composite; for
typical cases, p is O(

√
n). We achieve this reduction by transform-

ing the problem into a space where much of the solution is smooth,
and then utilize the pattern of this smoothness to adaptively sub-
divide the problem domain using quadtrees. We demonstrate the
merits of our approach by performing panoramic stitching and im-
age region copy-and-paste in significantly reduced time and mem-
ory while achieving visually identical results.

1 Introduction

Many recent algorithms for combining regions of multiple pho-
tographs or videos into a seamless composite operate in the gra-
dient domain. Rather than copying absolute colors from the source
images into a composite, these algorithms instead copy color gradi-
ents between source pixels and their immediate neighbors to form a
composite vector field. A composite image (or video) whose gradi-
ents best match this composite vector field in a least squares sense
is then reconstructed by solving a linear system (equivalent to the
discretized Poisson equation) whose variables are the colors of each
pixel [Pérez et al. 2003].

This technique is one of the most widely used algorithms in com-
putational photography and video; unfortunately, however, it does
not scale well to the multi-megapixel digital imagery common to-
day. Solving a linear system on the order of the number of pixels
quickly becomes prohibitive both in terms of time and space. Thus,
despite the broad applicability of gradient-domain techniques, this
poor scalability has limited their adoption in digital photography
software. 1

In this paper, we describe a simple and novel approach to gradient-
domain compositing that greatly reduces the scale of the prob-
lem. We show how to approximately compute an n pixel gradient-

http://agarwala.org/efficient gdc/

Figure 1 A 17-megapixel panorama shot with a hand-held camera.
(First row) Panorama created by simply copying colors from the source
images. Notice the subtle vertical seams caused by variations in expo-
sure. (Second row) The gradient-domain composite. (Third row) A vi-
sualization of the difference between the first two images. The key ob-
servation of our work is that this difference exhibits intricate detail near
the seams between image regions, but becomes progressively smoother
away from these seams. (Fourth row) To take advantage of this smooth-
ness, we subdivide the domain using a quadtree such that maximum
subdivision occurs along the seams. (Fifth row) The result computed in
this reduced space, which can be computed much more efficiently, is vi-
sually identical to the full gradient-domain solution. The numerical error
is shown in Table 1. Images courtesy of Tobias Oberlies.

domain composite by solving a linear system whose number of
variables is O(p) rather than n, where p is the total length of the
seams between the image regions in the composite. This length will
be much smaller than n, and can be shown to be O(

√
n) for typ-

ical cases. Solving this reduced system greatly reduces time and
memory requirements yet achieves results that are visually identi-
cal. We achieve this efficiency increase by observing that the differ-
ence between a simple color composite and its associated gradient-
domain composite is largely smooth (Figure 1), and the pattern of
this smoothness can be predicted a priori. We thus solve for this
difference, and adaptively subdivide the domain using a quadtree
(a hierarchical spatial data structure [Samet 1990]) so that smoother
areas of the solution are interpolated using fewer variables.

Efficient algorithms for solving the Poisson equation such as multi-
grid methods [Saad 2003] are well-studied and can be adapted to the
GPU [Bolz et al. 2003]. Szeliski [2006] recently introduced a pre-
conditioner that greatly accelerates the convergence of an iterative

1An exception is Adobe Photoshop’s Healing Brush [Georgiev 2004],
which is efficient because it operates on only small regions of an image at
any one time.

1

To appear in the ACM SIGGRAPH conference proceedings

conjugate gradient solver. These techniques, however, do nothing
to address the fundamental scale of the problem; they still require
solving linear systems on the order of the number of pixels. Thus,
even though the number of iterations required to solve the linear
system may be greatly reduced, the O(n) memory required by a
sparse solver can still quickly overwhelm the capabilities of a typi-
cal computer. Worse, iterative solvers do not exhibit the data reuse
patterns that would make them well-suited to an efficient out-of-
core implementation [Toledo 1999], since iterations computed only
within a local area of the domain may not make significant progress
towards the correct, global solution. In contrast, by solving an O(p)
variable linear system we can compute very large gradient-domain
composites in surprisingly little memory (Table 2). The main mem-
ory used by our approach is O(p) (since the input and output images
are streamed through the algorithm tile-by-tile), but asymptotically
the execution time is still O(n) since each input and output pixel
must be visited. However, those stages of our algorithm that are
O(n) are not time-consuming, and the solution of the O(p) linear
system remains the bottleneck.

We are not the first to adaptively vary resolution when solving lin-
ear systems or discretized partial differential equations. Losasso et
al. [2004] performed large-scale fluid simulations by solving the
Poisson equation on octree grids, and Szeliski and Shum [1996]
used quadtrees for hierarchical motion estimation in video. To the
best of our knowledge, however, we are the first to show how
quadtrees can be applied to efficient gradient-domain composit-
ing, and the transformations of the problem necessary to make
this approach effective. We are also the first to demonstrate very
large gradient-domain composites computed in reasonable time
and, more importantly, space.

2 Gradient-domain compositing

Gradient-domain compositing hides seams between composited
image regions by converting high-frequency artifacts that may
appear at the boundaries between composited regions into low-
frequency variations that spread across the image. This approach is
effective because the human visual system is much more sensitive
to local contrast than to slow changes in luminance and chromi-
nance [Palmer 1999]. Gradient-domain compositing takes advan-
tage of lightness constancy — our ability to discount the effects
of scene illumination in order to perceive the true reflectivity of a
scene. Retinex theory [Land 1977] suggests that humans achieve
lightness constancy by perceiving scene lightness only through lo-
cal luminance ratios at edges; low-frequency variations in lumi-
nance are discounted as the effects of illumination.

The usefulness of combining image regions in the gradient-domain
was first described by Perez et al. [2003]; they demonstrated the
ability to seamlessly copy a region from one image into another, as
well as a variety of other image editing operations. Georgiev [2004]
revealed that the Adobe Photoshop Healing Brush uses a simi-
lar technique, and Jia et al. [2006] improved on this basic ap-
proach by first optimizing the boundary of the copied region. Agar-
wala et al. [2004] extended gradient-domain compositing to the
case of compositing an entire image from regions of many sources,
within the context of a general, interactive framework for combin-
ing sets of images into a photomontage. This system used both
graph cuts [Kwatra et al. 2003] for optimal seam selection and
gradient-domain compositing for removing any artifacts remain-
ing at the seams. This approach has been used to fill holes in im-
ages [Hays and Efros 2007] and to compute multi-viewpoint [Agar-
wala et al. 2006] and video panoramas [Agarwala et al. 2005]. Oth-
ers have confirmed [Levin et al. 2004; Zomet et al. 2006; Goldman
and Chen 2005] that gradient-domain compositing is a crucial com-
ponent in state-of-the-art techniques for seamless panoramic stitch-
ing after the images have been aligned. Finally, Wang et al. [2004]

were the first to adapt gradient-domain compositing to video.

The technique described in this paper should be applicable in all
of the compositing systems just described. Gradient-domain tech-
niques are not only used for compositing image regions, however.
Various operations can be performed by creating an image that best
matches a specified gradient-field; recent examples include high dy-
namic range (HDR) compression [Fattal et al. 2002], intrinsic im-
age recovery [Weiss 2001], shadow removal [Finlayson and Drew
2002], flash artifact correction [Agrawal et al. 2005], reproducing
photographic look [Bae et al. 2006], and alpha matting [Sun et al.
2004]. One drawback of our approach is that increases in efficiency
will only occur if the problem can be transformed into a space
where the solution is mostly smooth, and the pattern of smoothness
can be predicted a priori. This transformation may not be possible
for all problems, however, and the degree of smoothness will affect
the gains in efficiency. We discuss the possibility of more widely
applying our approach in Section 5. Finally, computing a large lin-
ear system is not the only way to solve Poisson equations; Fourier
transforms can be used to directly calculate a solution [Simchony
et al. 1990]. However, this approach requires O(n lgn) time, and
more importantly, O(n) memory.

2.1 Mathematical formulation

Gradient-domain compositing is performed for a single color chan-
nel of an image by re-ordering the image pixels into a vector x and
solving for the x that best matches the desired horizontal and verti-
cal gradients ∇Ix, ∇Iy. There are various possibilities for choosing
these gradients. When compositing a region from image IA into im-
age IB [Pérez et al. 2003; Jia et al. 2006], the gradients inside this
region are ∇IA and the colors at the boundaries are fixed from image
IB. When simultaneously compositing multiple regions from multi-
ple images, the simplest approach [Agarwala et al. 2004] is to use
the gradient of the source image between any two pixels inside of
one region, and the average of the gradients of the two source im-
ages between any two pixels that straddle a boundary between two
regions.

Each horizontal and vertical gradient specifies a single linear con-
straint on two variables, all of which can be expressed in matrix
form as

Ax = b (1)

where x is of length n (one element for each pixel), and A has at
most two non-zero elements per row. This system of equations is
overconstrained, and thus the solution x that minimizes Ax−b in a
least squares sense is the solution to the normal equations

AT Ax = AT b (2)

where the sparse, banded square matrix AT A has at most five non-
zero elements per row. Since this linear system is large it is typ-
ically solved using an iterative solver such as conjugate gradi-
ent [Shewchuk 1994] whose inner loop performs the sparse matrix-
vector multiplication AT Ax. This multiplication is equivalent to ap-
plying the Laplacian2 to x, and thus can be applied procedurally
without storing AT A. The initial condition x0 of the iterative solver
is typically set to the image that would result from simply copying
colors (rather than gradients) from the source images (e.g., first row
of Figure 1).

2.2 Scalability issues

Consider using this approach to composite a panorama. A top-end
digital SLR can produce 16 megapixel images, so a panorama from

2At the boundaries of the image the Laplacian kernel will depend on the
choice of boundary conditions; the most common are Neumann and Dirich-
let [Saad 2003], both of which are supported by our approach.

2

To appear in the ACM SIGGRAPH conference proceedings

several such photographs can easily contain 50 megapixels (and of-
ten more). At a bare minimum, solving the n-element linear system
in equation (2) for one color channel requires storing five floating
point vectors of length n — one vector for x, one for AT b, and
three temporary vectors of storage during conjugate gradient iter-
ations. Assuming four bytes per float, computing one channel of
a 50 megapixel panorama would require one gigabyte of memory
for these five vectors alone. The running time of this basic conju-
gate gradient solver would also be painfully long. Pyramidal ap-
proaches such as multigrid accelerate convergence but require even
more memory; Szeliski [2006], for example, reports memory foot-
prints that are roughly doubled.

As we show in the next section, this memory consumption is simply
unnecessary; we can achieve visually equivalent results by solving
a dramatically smaller linear system.

3 Our approach

The key to our approach is to solve the problem in a reduced space
by assuming certain regions of the solution are smooth. The solu-
tion vector x itself is a natural image that will not typically be very
smooth. Observe, however, that the initial residual b−Ax0 will be
zero for any pixel not adjacent to a seam, since the colors of that
pixel and its neighbors were copied from one image and thus al-
ready satisfy the gradient constraints. If we substitute for x the sum
x = x0 +xδ , where xδ is the difference between the initial condition
and final solution, the normal equations become

AT Axδ = AT (b−Ax0). (3)

Note that the right hand side of this equation will be zero for any
pixel not adjacent to a seam. Regions of an image with a zero Lapla-
cian will be very smooth. Thus, we can see that the offset xδ to the
initial condition x0 will be very smooth away from the seams be-
tween image regions, even if the final image x is not smooth any-
where. An example of this pattern of smoothness for xδ is shown in
the third row of Figure 1.

Once this pattern of smoothness is realized, it becomes obvious that
representing each pixel in a smooth area with one variable is waste-
ful; these areas can accurately be interpolated with fewer variables
with larger regions of support. We can imagine varying the res-
olution of a solution vector adaptively; high resolution could be
used near seams, and progressively lower resolutions in areas far-
ther away from seams.

To accomplish this vision, we transform the full resolution problem
in equation (1) into a reduced space

ASy = b (4)

by substituting x = Sy, where y is a vector of dimension m such that
m � n, and S is an m×n matrix that transforms from the reduced to
the full space. Since the solution will not be smooth near seams, we
wish any pixel adjacent to a seam to be represented with a single
variable, just as in the full-resolution problem. Pixels in smoother
areas may be interpolated as a weighted sum of several elements
of y. The regions of support for interpolating x from elements of y
should be larger further away from the seams. Given the interpola-
tion x = Sy, the normal equations for the offset yδ are

ST AT ASyδ = ST AT (b−ASy0). (5)

Once the matrix ST AT AS on the left and vector ST AT (b−ASy0)
on the right are pre-computed, the inner loop of an iterative solver
for this linear system becomes an m×m rather than n× n sparse
matrix-vector multiplication.

To define the matrix S we adaptively subdivide the problem do-
main using a quadtree [Samet 1990] that is maximally subdivided

Figure 2 An inset of a grid of pixels in a larger gradient-domain com-
posite. The green pixels are assigned to one source image, and the pink
pixels to another; thus, a seam exists between them. The red lines are the
boundaries of quadtree leaf nodes. The corners of quadtree nodes lie at
pixel centers, and the quadtree is maximally subdivided along the seam.
In the full linear system, each pixel is represented by one variable in the
solution vector x. In the reduced linear system, variables in the solution
vector y exist at the corners of the quadtree nodes (the blue dots), except
along T-junctions where quadtree nodes of different sizes abut. We can
interpolate the full solution x from a reduced solution y by computing
x = Sy. This interpolation (which can be computed procedurally without
ever building matrix S) is defined by the structure of the quadtree. Pixels
that enclose a blue dot do not need to be interpolated; these values in
x are just copied from the appropriate variable in y (which corresponds
to a row in matrix S that is all 0 except for a single 1). Other pixels
are interpolated; for example, the pixel enclosing the orange dot can be
bi-linearly interpolated from the four corners of the enclosing quadtree
node (which corresponds to a row of S with four non-zero values that
sum to 1). One complication is that the lower-left corner of this node is
not a variable in y, since it lies on a T-junction; the value here must first
be linearly interpolated from the values of y at the blue dots above and
below (not pictured).

to pixel-sized nodes along the seams (a visualization of such a
quadtree can be seen in Figure 1). We represent the quadtree with a
pointer-based tree where each non-leaf node has four children that
subdivide space into four quadrants. The root node corresponds to
the smallest square that can entirely contain the image domain and
whose width is a power of two. Variables in the reduced space (ele-
ments of yδ) are placed at the corners between leaf nodes, as shown
in Figure 2. Each leaf node stores the indices of the variables at its
four corners. To ensure a gradual reduction in resolution away from
the seams, we force the quadtree to be restricted; no two nodes that
share an edge may differ in tree depth by more than one.

Given this quadtree and the values of a vector yδ , the interpolation
xδ = Syδ can be computed with a single traversal of the quadtree,
as shown in Figure 2. Note that the matrix S does not need to be ex-
plicitly built since it simply encodes a bi-linear interpolation from
quadtree nodes to pixels. That is, each pixel of xδ is set as the bi-
linear interpolation of the values of yδ at the four corners of the
enclosing quadtree node. One exception is that we do not place vari-
ables at corners that lie at T-junctions between neighboring nodes of
different depth; instead, T-junctions are interpolated from the two
corners of the larger node along the horizontal stem of the “T”.

3.1 Implementation details

Our overall algorithm can be be broken into three stages. In the in-
put stage, the quadtree is constructed. Note that the colors of input
image pixels appear only in the right-hand side of equation (5), and
are non-zero only for pixels adjacent to a seam. Thus, in this input
stage the colors of the relevant input images are stored only at leaf
nodes bordering a seam. Each input image (or tile of an input im-
age) can be immediately discarded after traversing the quadtree to
store these colors.

The second stage is the computation of the linear system in equa-
tion (5). The right-hand side vector, which is computed only once
per color channel, is non-zero only for variables that border seams.

3

To appear in the ACM SIGGRAPH conference proceedings

Error Time (s) Memory (MB)

Dataset Mpixels Vars (%) RMS Max QT HB LHB QT HB LHB

Plane 2.4 0.94 0.0108 0.36 3 371 26 13 96 227
St. Emilion 9.7 0.62 0.0132 1.37 9 3639 160 24 362 1044
Beynac 11.6 0.38 0.0103 1.25 8 3357 177 16 435 1252
Rainier 16.6 0.45 0.0157 1.13 14 6446 268 27 620 1790

Table 1 Performance of three algorithms for several gradient-domain
compositing problems. For each dataset, we show the number of
megapixels, the number of variables per color channel in the reduced
linear system as a percentage of the total number of pixels, and the error
between the solutions computed using the reduced and full linear sys-
tems (error is measured using the 8-bit red channel, with both an average
per-pixel RMS error and the maximum error across all pixels). We show
the time and memory performance of three algorithms: quadtree-based
(QT), hierarchical basis preconditioning (HB), and locally adapted hier-
archical basis preconditioning (LHB). Each panorama was stitched from
five source images.

Since these variables always correspond to single pixels (Figure 2),
the S and ST matrices on the right-hand side do nothing but change
the index of the variable. The right-hand side is therefore easy to
compute procedurally in a single quadtree traversal. The matrix
ST AT AS on the left-hand side can also be computed procedurally
in a single quadtree traversal by summing the contribution of the
gradient constraint between each pair of neighboring pixels along
the edges of quadtree nodes (the Laplacian of pixels internal to a
quadtree node will be zero and thus can be ignored). We compute
this matrix once and store it in a sparse, symmetric form. The four-
neighbor quadtree traversal algorithm of Fuhrmann [1988] is useful
during the setup of the linear system, which is then solved using
preconditioned conjugate gradients. We precondition using a stan-
dard incomplete Cholesky factorization [Saad 2003], though even
diagonal preconditioning is sufficient given the reduced size of the
system. Note that there is never a need to allocate any O(n) storage
during this stage; the memory allocated is O(m).

In the third and final output stage, the interpolated solution xδ is
added to the initial composite x0. To avoid allocating the entire xδ ,
the interpolation xδ = Syδ can be performed independently for sub-
regions (tiles) of the output image.

3.2 Scale of the reduced space

Since the input and output stages can be performed by streaming
over arbitrarily small tiles of the source images, the memory and
time requirements of our algorithm are bounded by the solution of
an m-variable linear system. How small is m compared to n? The
quadtree used here is equivalent to a region quadtree that represents
a 2D array whose elements can be values in a small, discrete range.
Dyer [1982] showed that the number of quadtree nodes in a region
quadtree is O(p), where p is the perimeter of the regions in the ar-
ray, i.e., the total length of the seams. Our quadtree is restricted, but
Moore [1995] showed that restriction only increases the number of
nodes by a constant factor. Since m is linearly proportional to the
number of leaf nodes in the quadtree, m is O(p). The growth of p
will depend on how the seams are chosen; for typical cases, we ob-
serve that p is O(

√
n). For example, if a single rectangular region

is chosen from each one of a constant number of input images, p
will be O(

√
n) since the perimeter of each region is upper-bounded

by the perimeter of the composite (which is O(
√

n) assuming the
width and height of the composite are related by a constant fac-
tor). The same upper-bound is true for a polygonal region with a
constant number of sides. Seams chosen using graph cuts [Kwatra
et al. 2003] will typically also be short since lengths are minimized
by their cost functions, though one can imagine pathological inputs
that would cause p to exceed O(

√
n).

Dataset Mpixels Vars (%) # sources Time (s) Memory (MB)

Sedona 34.6 0.47 6 29 52
Edinburgh 39.7 1.15 25 122 123
Crag 62.7 0.47 7 78 96
RedRock 83.7 0.46 9 118 112

Table 2 Performance of quadtree-based gradient-domain compositing
for several very large panoramas.

4 Experimental results

We compare the performance of our technique against our imple-
mentation of two other algorithms for several datasets of different
sizes (Table 1), and show several results that were too large to com-
pute in available memory using other algorithms (Table 2). Most of
our results are panoramas whose seams were computed using hi-
erarchical graph cuts [Agarwala et al. 2005], though the first result
in Table 1 demonstrates image region copy-and paste with manu-
ally chosen seams. In the interest of space, most of our results can
only be seen on the project web site, although the Rainier dataset is
shown in Figure 1.

We compare against two approaches for solving the full linear sys-
tem. The first is locally adapted hierarchical basis precondition-
ing (LHB) [Szeliski 2006], one of the fastest current approaches
to solving gradient-domain problems. We also compare against the
older hierarchical basis (HB) approach [Szeliski 1990], because un-
like LHB, it requires no additional memory to perform precondi-
tioning and thus can be considered a lower bound on the memory
required to solve the full linear system. Along with performance
comparisons, we also measure the error introduced by our reduc-
tion of the linear system by comparing its interpolated result (i.e.,
Sy) against the solution of the full linear system computed by LHB.

The reduced linear system is typically over 99% smaller. While it
only approximates the full solution, the results are visually iden-
tical; when the images computed using both systems are rapidly
flipped back and forth, no differences can be seen. Even when we
scale the computed offsets by ten to generate the visualization in the
third row of Figure 1, no differences are visible. The error values in
Table 1 explain why. For color values that range from 0 to 255, the
per-pixel RMS error is in the hundredths. The maximum error tells
us that, once rounded to the nearest integer, color values differ by
at most two for these examples. Differences this rare and small are
simply not visible to the naked eye.

While the quality of the result remains the same, the reductions
in both time and memory are dramatic. For all algorithms, the it-
erative solver was terminated when the sum of squared residuals
(i.e., ||Ax− b||2 for the linear system Ax = b) was less than 10−11

times the number of pixels; this error tolerance is aggressively low,
but gives us a high confidence that each result has converged. The
LHB approach terminated in very few iterations (typically around
20 for our error tolerance irregardless of the number of pixels in the
dataset), but the sheer size of the full system and the time required
to setup the locally adapted pyramids causes its performance to be
slower. Note that the performance numbers do not include resources
consumed when reading and writing data from disk.

5 Future work

Our approach is very efficient at compositing image regions in
the gradient-domain; an obvious extension is to perform gradient-
domain compositing for video [Wang et al. 2004; Agarwala et al.
2005], where scalability concerns are even greater. This extension
should be straightforward using octrees rather than quadtrees.

Our technique is effective because we can create an initial solution
to the linear system whose residual is sparse. The same can be said

4

To appear in the ACM SIGGRAPH conference proceedings

about several other gradient-domain problems, such as shadow re-
moval [Finlayson and Drew 2002], removal of reflections in flash
images [Agrawal et al. 2005], and reproduction of photographic
look [Bae et al. 2006], since in these cases the desired gradient
field largely matches the original image except for certain gradi-
ents that are damped or set to zero. This observation suggests that
our approach could be used to improve their efficiency. However,
it cannot be directly applied to other gradient-domain problems for
which no such initial solution exists.

We also plan to explore an extension that may allow more efficient
out-of-core reconstruction from general gradient fields. A solution
could be computed for each tile of an image independently, thus
creating an initial solution with non-zero residuals only along tile
boundaries. Then, a quadtree could be subdivided along these tile
boundaries and used to compute an offset to the initial solution that
corrects the errors introduced by tile-by-tile computation.

6 Conclusion

While gradient-domain compositing is a remarkably effective tech-
nique for compositing image and video regions, it simply was not
previously practical to use it for imagery of the large resolutions
common even in consumer-level digital imaging. We have shown an
approximate approach to gradient-domain compositing that yields
visually identical results, yet can be computed in surprisingly little
time and memory, even for very large composites. This efficiency
improvement allowed us to use gradient-domain compositing in the
new “Auto-Blend Layers” feature in Adobe R© Photoshop R© CS3.
We hope that our technique will be one of many to address the scal-
ability of algorithms for computational photography and video.

Acknowledgements: Thanks to Dan Goldman for fruitful discussions, Rick
Szeliski for advice in implementing his preconditioner, and Dan Goldman,
Michael Cohen, and David Salesin for help with the manuscript. Thanks
to Jeff Chien for helping me transfer this research into Photoshop, and to
Tobias Oberlies and Brian Curless for images.

References
AGARWALA, A., DONTCHEVA, M., AGRAWALA, M., DRUCKER, S.,

COLBURN, A., CURLESS, B., SALESIN, D., AND COHEN, M. 2004.
Interactive digital photomontage. ACM Transactions on Graphics 23, 3
(Aug.), 294–302.

AGARWALA, A., ZHENG, K. C., PAL, C., AGRAWALA, M., COHEN, M.,
CURLESS, B., SALESIN, D. H., AND SZELISKI, R. 2005. Panoramic
video textures. ACM Transactions on Graphics 24, 3 (Aug.), 821–827.

AGARWALA, A., AGRAWALA, M., COHEN, M., SALESIN, D., AND

SZELISKI, R. 2006. Photographing long scenes with multi-viewpoint
panoramas. ACM Transactions on Graphics 25, 3 (July), 853–861.

AGRAWAL, A., RASKAR, R., NAYAR, S. K., AND LI, Y. 2005. Remov-
ing photography artifacts using gradient projection and flash-exposure
sampling. ACM Transactions on Graphics 24, 3 (Aug.), 828–835.

BAE, S., PARIS, S., AND DURAND, F. 2006. Two-scale tone management
for photographic look. ACM Transactions on Graphics 25, 3 (July), 637–
645.

BOLZ, J., FARMER, I., GRINSPUN, E., AND SCHRÖDER, P. 2003. Sparse
matrix solvers on the GPU: Conjugate gradients and multigrid. ACM
Transactions on Graphics 22, 3 (July), 917–924.

DYER, C. 1982. The space efficiency of quadtrees. Computer Graphics
and Image Processing 19, 4 (Aug.), 335–348.

FATTAL, R., LISCHINSKI, D., AND WERMAN, M. 2002. Gradient domain
high dynamic range compression. ACM Transactions on Graphics 21, 3,
249–256.

FINLAYSON, G., AND DREW, S. H. M. 2002. Removing shadows from
images. In European Conference on Computer Vision (ECCV 02), 823–
831.

FUHRMANN, D. R. 1988. Quadtree traversal algorithms for pointer-based
and depth-first representations. IEEE Transactions on Pattern Analysis
and Machine Intelligence 10, 6, 955–960.

GEORGIEV, T. 2004. Photoshop healing brush: a tool for seamless cloning.
In Workshop on Applications of Computer Vision (ECCV 2004), 1–8.

GOLDMAN, D. B., AND CHEN, J.-H. 2005. Vignette and exposure calibra-
tion and compensation. In International Conference on Computer Vision
(ICCV 05), 899–906.

HAYS, J., AND EFROS, A. 2007. Scene completion using millions of
photographs. ACM Transactions on Graphics 26, 3, To appear.

JIA, J., SUN, J., TANG, C.-K., AND SHUM, H.-Y. 2006. Drag-and-drop
pasting. ACM Transactions on Graphics 25, 3 (July), 631–637.

KWATRA, V., SCHÖDL, A., ESSA, I., TURK, G., AND BOBICK, A. 2003.
Graphcut textures: Image and video synthesis using graph cuts. ACM
Transactions on Graphics 22, 3, 277–286.

LAND, E. H. 1977. The retinex theory of color vision. Scientific American
237, 6, 108–128.

LEVIN, A., ZOMET, A., PELEG, S., AND WEISS, Y. 2004. Seamless image
stitching in the gradient domain. In European Conference on Computer
Vision (ECCV 04), 377–389.

LOSASSO, F., GIBOU, F., AND FEDKIW, R. 2004. Simulating water and
smoke with an octree data structure. ACM Transactions on Graphics 23,
3 (Aug.), 457–462.

MOORE, D. 1995. The cost of balancing generalized quadtrees. In Proceed-
ings of the Third ACM Symposium on Solid Modeling and Applications,
305–312.

PALMER, S. E. 1999. Vision Science: Photons to Phenomenology. The
MIT Press.

PÉREZ, P., GANGNET, M., AND BLAKE, A. 2003. Poisson image editing.
ACM Transactions on Graphics 22, 3 (July), 313–318.

SAAD, Y. 2003. Iterative methods for sparse linear systems, 2nd ed. Society
for Industrial and Applied Mathematics (SIAM).

SAMET, H. 1990. Applications for spatial data structures: computer graph-
ics, image processing, and GIS. Addison-Wesley.

SHEWCHUK, J. R. 1994. An introduction to the conjugate gradient method
without the agonizing pain. Tech. Rep. CS-94-125, Carnegie Mellon
University.

SIMCHONY, T., CHELLAPPA, R., AND SHAO, M. 1990. Direct analyti-
cal methods for solving Poisson equations in computer vision problems.
IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 5,
435–446.

SUN, J., JIA, J., TANG, C.-K., AND SHUM, H.-Y. 2004. Poisson matting.
ACM Transactions on Graphics 23, 3 (Aug.), 315–321.

SZELISKI, R., AND SHUM, H.-Y. 1996. Motion estimation with quadtree
splines. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 18, 12, 1199–1210.

SZELISKI, R. 1990. Fast surface interpolation using hierarchical basis func-
tions. IEEE Transactions on Pattern Analysis and Machine Intelligence
12, 6, 513–528.

SZELISKI, R. 2006. Locally adapted hierarchical basis preconditioning.
ACM Transactions on Graphics 25, 3 (July), 1135–1143.

TOLEDO, S. 1999. A survey of out-of-core algorithms in numerical linear
algebra. In External Memory Algorithms, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. 161–180.

WANG, H., RASKAR, R., AND AHUJA, N. 2004. Seamless video editing.
In Proceedings of the International Conference on Pattern Recognition
(ICPR), 858–861.

WEISS, Y. 2001. Deriving intrinsic images from image sequences. In
International Conference On Computer Vision (ICCV 01), 68–75.

ZOMET, A., LEVIN, A., , PELEG, S., , AND WEISS, Y. 2006. Seamless
image stitching by minimizing false edges. IEEE Transactions on Image
Processing 15, 4, 969–977.

5

